

Yiğit Berkay Uslu, Samar Hadou, Shirin Saeedi Bidokhti and Alejandro Ribeiro

- **Goal:** Allocate network resources *optimally* for any given network state \mathbf{H} :

$$P^*(\mathbf{H}) = \underset{\mathcal{D}_{\mathbf{x}}(\mathbf{H})}{\text{maximum}} \mathbb{E}_{\mathcal{D}_{\mathbf{x}}(\mathbf{H})} [f_0(\mathbf{x}(\mathbf{H}), \mathbf{H})], \quad \text{subject to } \mathbb{E}_{\mathcal{D}_{\mathbf{x}}(\mathbf{H})} [\mathbf{f}(\mathbf{x}(\mathbf{H}), \mathbf{H})]. \quad (1)$$

⇒ $\mathcal{D}_{\mathbf{x}}^*(\mathbf{H})$ maximizes an *expected utility* while satisfying *expected requirements*.

⇒ QoS-optimality via *time-sharing* $\frac{1}{T} \sum_{\tau=1}^T f_0(\mathbf{x}_\tau(\mathbf{H}), \mathbf{H}) \approx \mathbb{E}_{\mathcal{D}_{\mathbf{x}}} [f_0(\mathbf{x}(\mathbf{H}), \mathbf{H})]$.

- **Challenge:** We *cannot solve* directly for the *optimal distributions* $\mathcal{D}_{\mathbf{x}}^*(\mathbf{H}) \mathcal{D}_{\mathbf{H}}$.

- **Solution:** Learn a **generative model of resource allocations** $\mathcal{D}_{\mathbf{x}}(\mathbf{H}; \theta^*) \approx \mathcal{D}_{\mathbf{x}}^*(\mathbf{H})$.

⇒ Train a **conditional diffusion model policy** $\mathcal{D}_{\mathbf{x}}^*(\mathbf{H}; \theta)$ to imitate the experts $\mathcal{D}_{\mathbf{x}}^*(\mathbf{H})$.

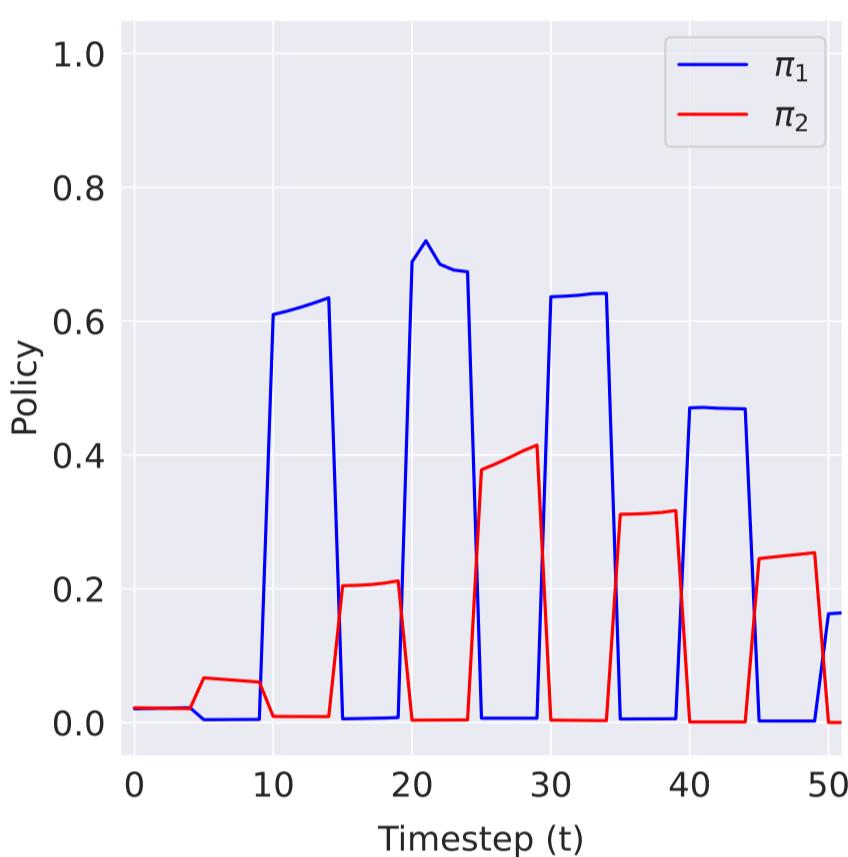
⇒ Utilize a **graph neural network (GNN) backbone for the diffusion model** to operate directly on graphs \mathbf{H} and enable **learning families of policies** across $\mathcal{D}_{\mathbf{H}}$.

Imitation Learning of Stochastic Resource Allocation Policies

- A **generative model** learns to **imitate** an **expert policy** over a **family of networks**.

$$\mathcal{D}_{\mathbf{x}}^*(\mathbf{H}; \theta) = \underset{\mathcal{D}_{\mathbf{x}}(\mathbf{H}; \theta)}{\text{argmin}} \mathbb{E}_{\mathcal{D}_{\mathbf{H}}} \left[\text{D}_{\text{KL}} (\mathcal{D}_{\mathbf{x}}^*(\mathbf{H}) \parallel \mathcal{D}_{\mathbf{x}}(\mathbf{H}; \theta)) \right]. \quad (2)$$

- We leverage a **(state-augmented) primal-dual algorithm** as an expert policy that
 - ⇒ generates a trajectory of optimal primal and dual variables $(\mathbf{x}_\tau(\mathbf{H}), \lambda_\tau(\mathbf{H}))_{\tau \geq 1}^\infty$.
 - ⇒ maintains a.s.-feasibility and near-optimality by **policy randomization**.
 - ⇒ trades off objective optimality for fast transient dynamics.



- We collect an **expert dataset** $\{\mathbf{x}_1(\mathbf{H}^{(1)}), \dots, \mathbf{x}_T(\mathbf{H}^{(1)}), \mathbf{x}_1(\mathbf{H}^{(2)}), \dots, \mathbf{x}_T(\mathbf{H}^{(M)})\}$ of optimal solutions to (1) via (stationary) **state-augmented dual descent roll-outs**.
- We train a **GDM policy** to minimize (3) on the expert dataset.
- The trained GDM policy, **parametrized by a GNN**, generalizes to $\mathcal{D}_{\mathbf{H}}$.

GNN-Parametrized Generative Diffusion Model Policies

- Diffusion models learn a **denoising chain** that reverses a forward noising chain.

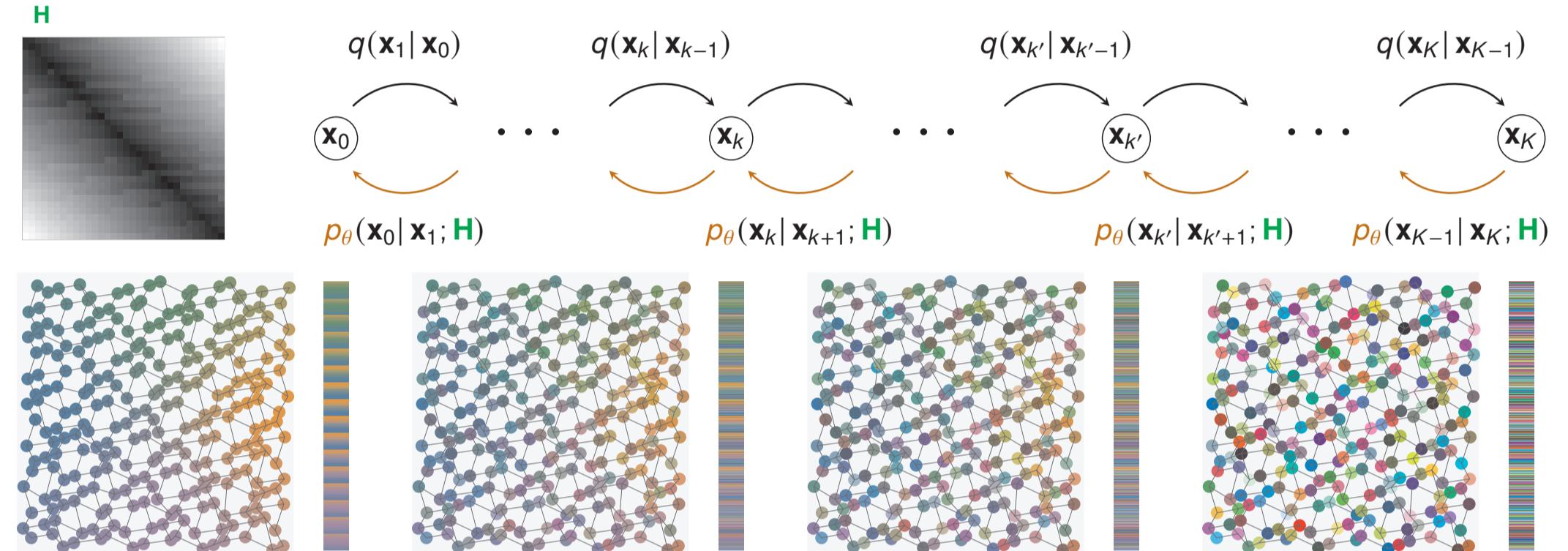
- We parametrize the reverse chain \mathbf{p}_θ and learn a parametric **denoiser** ϵ_{θ^*} ,

$$\theta^* \in \underset{\theta}{\text{argmin}} \mathcal{L}(\theta) := \mathbb{E}_{\mathbf{x}_0, \mathbf{H}, k, \epsilon} \|\epsilon_\theta(\mathbf{x}_k(\mathbf{x}_0, \epsilon), k; \mathbf{H}) - \epsilon\|^2. \quad (3)$$

- We iterate the learned reverse chain $\mathbf{p}_{\theta^*}(\mathbf{x}_{k-1} | \mathbf{x}_k; \mathbf{H})$ for $k = K, \dots, 1$, by updating

$$\mathbf{x}_{k-1} = \frac{1}{\sqrt{\alpha_k}} \left(\mathbf{x}_k - \frac{\beta_k}{\sqrt{1 - \bar{\alpha}_k}} \epsilon_{\theta^*}(\mathbf{x}_k, k; \mathbf{H}) \right) + \sigma_k \mathbf{w}, \quad \mathbf{x}_K, \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (4)$$

to **generate novel resource allocations** $\mathbf{x}_0 | \mathbf{H} \sim \mathbf{p}_{\theta^*}(\cdot; \mathbf{H}) := \mathcal{D}_{\mathbf{x}}(\mathbf{H}; \theta^*) \approx \mathcal{D}_{\mathbf{x}}^*(\mathbf{H})$.



- We parametrize the **denoiser** ϵ_θ by a **GNN architecture** that cascades L graph convolutional layers with read-in $(\mathbf{x}_k, k) \mapsto \mathbf{Z}_0$ and read-out $\mathbf{Z}_L \mapsto \epsilon_{\theta^*}$ layers:

$$\mathbf{Z}^{(\ell)} = \Psi^{(\ell)} \left(\mathbf{Z}^{(\ell-1)}; \mathbf{H}, \Theta^{(\ell)} \right) = \varphi \left[\sum_{k=0}^K \mathbf{H}^k \mathbf{Z}^{(\ell-1)} \Theta_k^{(\ell)} \right], \quad \ell = 1, \dots, L. \quad (5)$$

⇒ A **graph signal generative** model conditioned on input **graphs** \mathbf{H} (via GSOs).

Numerical Results: Power Control

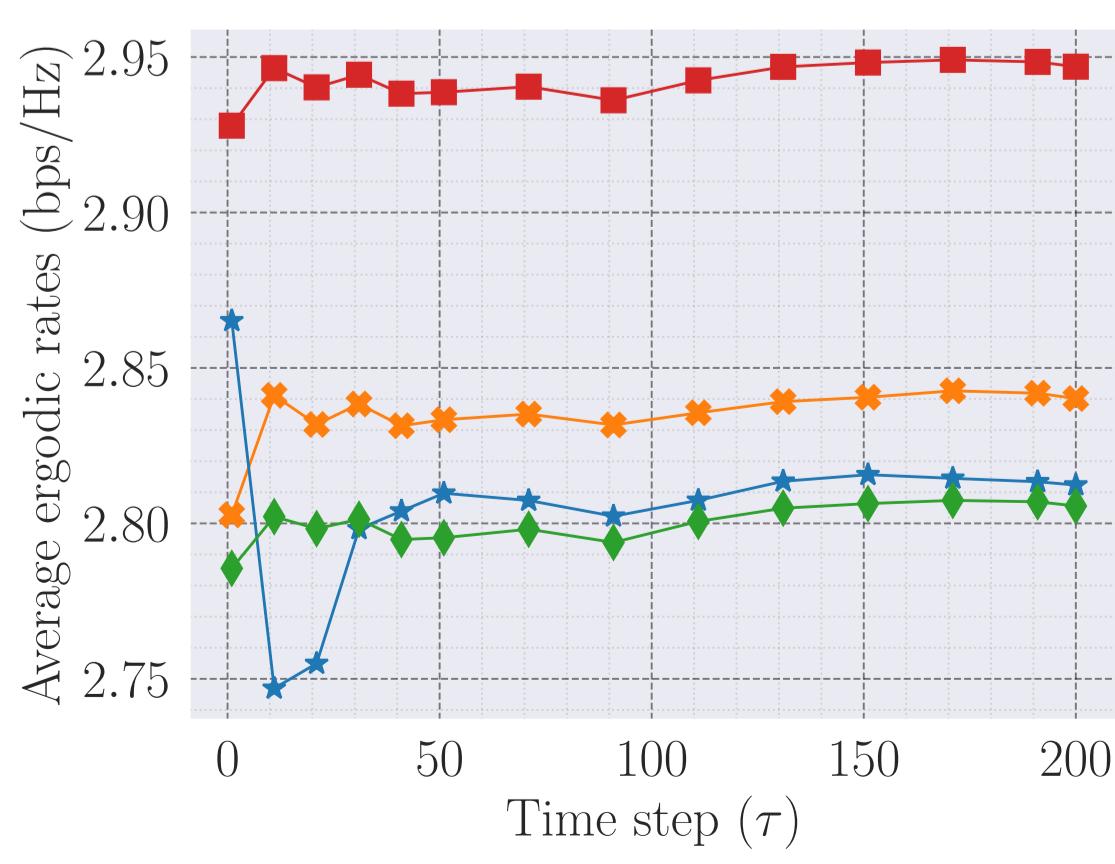
- A wireless (Rayleigh) fading channel with transmitter-receiver (tx-rx) pairs as users (nodes).
- Network state (GSO) \mathbf{H} represented by the set of constant long-term channel gains.
- Actual channel gain from tx i to rx j at time τ fluctuates as $h_{ij,\tau} \sim \mathcal{D}_{\mathbf{H}|\mathbf{H}}(\mathbf{H})$ due to small-scale fading.
- Tx i allocates power $x_{i,\tau} \geq 0$ at time τ and causes interference to neighboring tx-rx pairs $j \in \mathcal{N}(i)$.
- Communication rate r determined by SINR at each rx j . ⇒ $\text{SINR}_{j,\tau} = \frac{h_{jj,\tau} \cdot x_{j,\tau}}{1 + \sum_{i \in \mathcal{N}(j)} h_{ij,\tau} \cdot x_{i,\tau}}$.



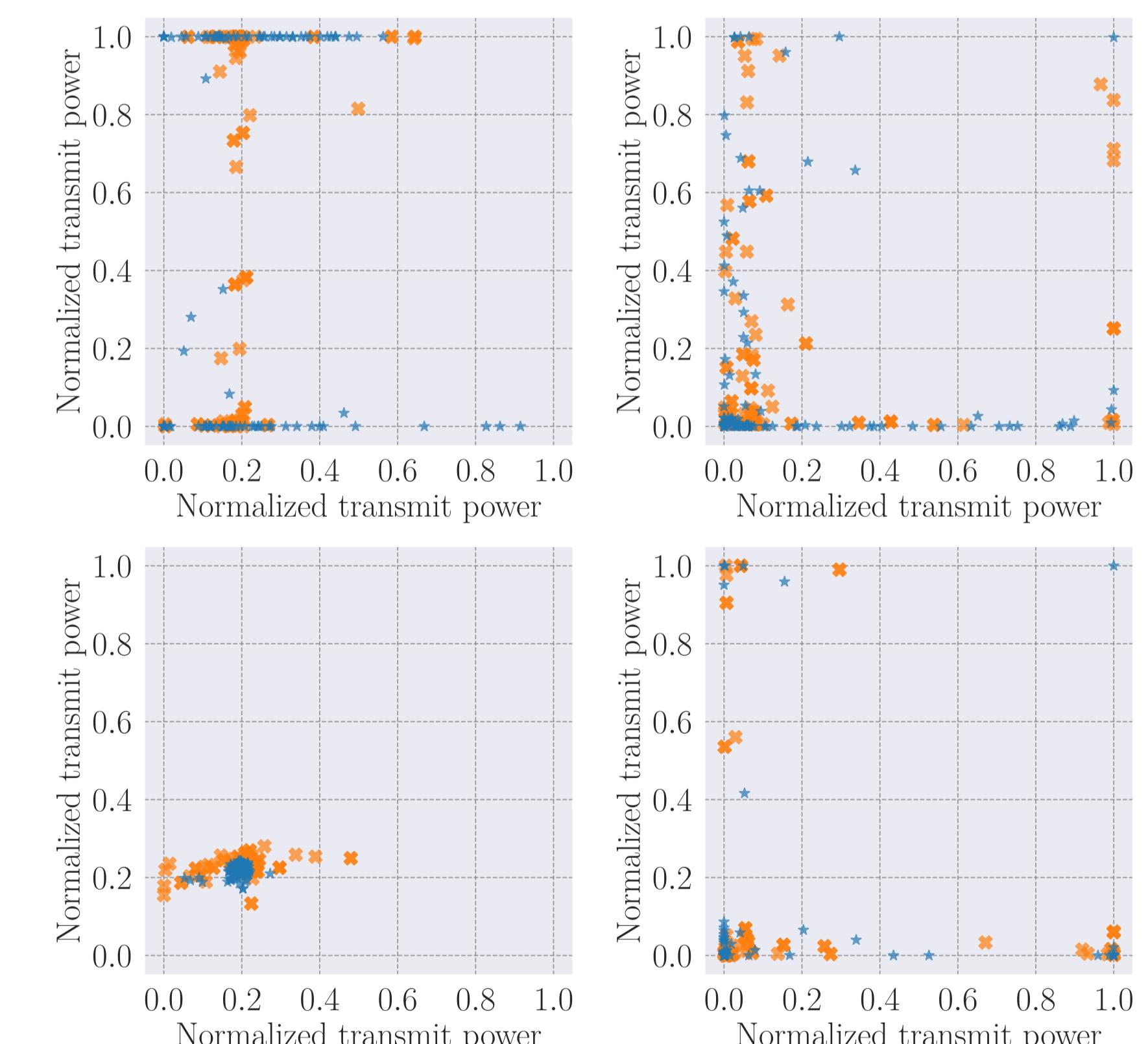
- Given $\mathbf{H} \sim \mathcal{D}_{\mathbf{H}}$, we want to **allocate transmit powers** $\mathbf{x}_\tau \sim \mathcal{D}_{\mathbf{x}}(\mathbf{H})$ over T time steps to **maximize** ergodic network-wide sum-rate, subject to **minimum-rate requirements** and a max. transmit power budget x_{\max} :

$$\begin{aligned} P^*(\mathbf{H}) &= \max_{\mathcal{D}_{\mathbf{x}}(\mathbf{H})} \frac{1}{T} \sum_{\tau=1}^T \sum_j r(\text{SINR}_{j,\tau}) \\ \text{s. t. } & \frac{1}{T} \sum_{\tau=1}^T r(\text{SINR}_{j,\tau}) \geq r_{\min}, \quad \forall j, \\ \text{s. t. } & 0 \leq x_{j,\tau} \leq x_{\max}, \quad \forall j, \tau = 1, \dots, T. \end{aligned}$$

- GDM policy $\mathbf{x}_\tau \sim \mathcal{D}_{\mathbf{x}}(\mathbf{H}; \theta^*)$ achieve ergodic utility and requirement QoS close to the expert policy.
 - ⇒ Deterministic baselines fail under challenging channel conditions.



- GDM policy bypasses suboptimal transients and samples from **stationary** dual descent dynamics.



- GDM policy samples **optimal power control policies** that tend to be probabilistic and involve multiple transmission modes.

