GNN-Parametrized Diffusion Policies
for Wireless Resource Allocation
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» Goal: Allocate network resources optimally for any given network state H: » Challenge: We cannot solve directly for the optimal distributions Dy (H) Dy.

P*(H) = maximum Egp ) [fo (x(H), H)] subjectto Ep (n) [f(x(H), H)] (1) > Solution: Learn a generative model of resource allocations Dy (H; 6%) ~ Dy (H).
" .Z)"FH) o o y . = Train a conditional diffusion model policy D, (H; 6) to imitate the experts D, (H).
= Dx(H) n‘laxn‘mze’s ar? P ecte. utz1 ztyTw tie satislylng expected requirements. = Utilize a graph neural network (GNN) backbone for the diffusion model to
= QoS-optimality via time-sharing 7 2.r_ fo (x:(H).H) ~ Ep, [fo (x(H). H)] ' operate directly on graphs H and enable learning families of policies across Dy.
Imitation Learning of Stochastic Resource Allocation Policies GNN-Parametrized Generative Diffusion Model Policies
» A generative model learns to imitate an expert policy over a family of networks. » Diffusion models learn a denoising chain that reverses a forward noising chain.
Di(H;0) = argmin Ep, [ Dk (D5 (H) || Dx(H; 6)) ] . (2) » We parametrize the reverse chain py and learn a parametric denoiser €y,
Dx(H;0) . , 2
. . . 0" € argmin L(0) = Ex, Hk.e ||€0(Xk(Xo, €), k;H) — €| 3)
» We leverage a (state-augmented) primal-dual algorithm as an expert policy that z
= generates a trajectory of optimal primal and dual variables (X, (H), /lT(H))i;. > We iterate the learned reverse chain py-(Xx—1|Xx; H) for k = K, ..., 1, by updating

= maintains a.s.-feasibility and near-optimality by policy randomization. 1

Bk

. o . . Xk-1 = _(Xk — €0 (Xk, K; H)) + oW, xXg, W~ N(0, 1), 4
= trades off objective optimality for fast transient dynamics. vk V1 — @
5 00 to generate novel resource allocations Xg|H ~ pg«(+; H) := Dy(H; 0%) = Dy (H).
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» We parametrize the denoiser €y by a GNN architecture that cascades L graph
» We collect an expert dataset {x1 (HD), ..., x7(HD), x4 (H?®), ... ,xT(H(M))} of

optimal solutions to (1) via (stationary) state-augmented dual descent roll-outs.

convolutional layers with read-in (Xk, k) — Zg and read-out Z; — €y- layers:
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» We train a GDM policy to minimize (3) on the expert dataset. 20 — g (2(5—1); H, @(f)) =

» The trained GDM policy, parametrized by a GNN, generalizes to Dpy.
= A graph signal generative model conditioned on input graphs H (via GSOs).

Numerical Results: Power Control

» A wireless (Rayleigh) fading channel with transmitter-receiver (tx-rx) pairs as users (nodes). 1.0 g 1.0 e *
) " i )
» Network state (GSO) H represented by the set of constant long-term channel gains. é 0.8 - N é 0.8 -+
» Actual channel gain from tx / to rx j at time 7 fluctuates as hjj  ~ Z)ﬁ|H(H) due to small-scale fading. £ "] e T s X
» Tx i allocates power X; » > 0 at time 7 and causes interference to neighboring tx-rx pairs j € N (i). = 0.0 5 0.0 g
» Communication rate r determined by SINR at each rx j. = SINR; ; = AL . g 0.4 ok g04 %
1+Z' 'hI"T°XI'T = * = X
ieN () 'y, , ~ = “
= 0.2 —= = 0.2 Q%ﬁ % _
» Given H ~ Dy, we want to allocate transmit powers = > o X x
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X: ~ Dx(H) over T time steps to maximize ergodic

network-wide sum-rate, subject to minimum-rate

1
P*(H) = —
(H) zr)Tl%T

ZT: Z r(SINR, ;)
=1

n
1 .
5. t. ?Zr(SINRj,T) > iy Vi,

:
s.t. 0<Xjr <Xmax, YV, T=1,...,T.

» GDM policy x; ~ Dy (H; 6%) achieve ergodic utility and requirement QoS close to the expert policy.

= Deterministic baselines fail under challenging channel conditions.
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» GDM policy bypasses suboptimal transients and samples from stationary dual descent dynamics.

requirements and a max. transmit power budget Xmax:

0.0 02 04 0.6 0.8

1.0

Normalized transmit power

—_
-

=
00

=
o

=
N

8

:

b <
»

=
N

Normalized transmit power

=
)

0.0 02 04 0.6 0.8

Normalized transmit power

1.0

Normalized transmit power

— — — —
e o o0 o

-)

2

0.0

0.0 02 04 06 08 1.0
Normalized transmit power

*

»
*

TR

*

2%

g@ ]

)

&8

%-&f%g*-* o e

0.0 02 04 06 08 1.0
Normalized transmit power

» GDM policy samples optimal power control policies that tend to be

probabilistic and involve multiple transmission modes.
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7 = 200 time steps
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