
GNN-Parametrized Diffusion Policies
for Wireless Resource Allocation
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▶ Goal: Allocate network resources optimally for any given network state H:

P∗(H) = maximum
Dx(H)

EDx(H)
[
f0
(
x(H),H

) ]
, subject to EDx(H)

[
f
(
x(H),H

) ]
. (1)

⇒ D∗
x(H) maximizes an expected utility while satisfying expected requirements.

⇒ QoS-optimality via time-sharing 1
T
∑T

𝜏=1 f0
(
x𝜏(H),H

)
≈ EDx

[
f0
(
x(H),H

) ]
.

▶ Challenge: We cannot solve directly for the optimal distributions D∗
x(H)DH.

▶ Solution: Learn a generative model of resource allocations Dx(H; 𝜃∗) ≈ D∗
x(H).

⇒ Train a conditional diffusion model policy D∗
x(H; 𝜃) to imitate the experts D∗

x(H).
⇒ Utilize a graph neural network (GNN) backbone for the diffusion model to

operate directly on graphs H and enable learning families of policies across DH.

Imitation Learning of Stochastic Resource Allocation Policies

▶ A generative model learns to imitate an expert policy over a family of networks.

D∗
x(H; 𝜃) = argmin

Dx(H;𝜃)
EDH

[
DKL

(
D∗

x(H)


 Dx(H; 𝜃)

) ]
. (2)

▶ We leverage a (state-augmented) primal-dual algorithm as an expert policy that
⇒ generates a trajectory of optimal primal and dual variables

(
x𝜏(H), 𝝀𝜏(H)

)∞
𝜏≥1.

⇒ maintains a.s.-feasibility and near-optimality by policy randomization.
⇒ trades off objective optimality for fast transient dynamics.
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▶ We collect an expert dataset
{
x1

(
H(1)) , . . . , xT

(
H(1)) , x1

(
H(2)) , . . . , xT

(
H(M))} of

optimal solutions to (1) via (stationary) state-augmented dual descent roll-outs.
▶ We train a GDM policy to minimize (3) on the expert dataset.
▶ The trained GDM policy, parametrized by a GNN, generalizes to DH.

GNN-Parametrized Generative Diffusion Model Policies

▶ Diffusion models learn a denoising chain that reverses a forward noising chain.
▶ We parametrize the reverse chain p𝜃 and learn a parametric denoiser 𝝐 𝜃∗,

𝜃∗ ∈ argmin
𝜃

L(𝜃) ≔ Ex0,H,k,𝝐


𝝐 𝜃 (xk (x0, 𝝐), k;H

)
− 𝝐



2
. (3)

▶ We iterate the learned reverse chain p𝜃∗
(
xk−1 |xk;H

)
for k = K , . . . , 1, by updating

xk−1 =
1

√
𝛼k

(
xk −

𝛽k√
1 − 𝛼̄k

𝝐 𝜃∗(xk, k;H)
)
+ 𝜎kw, xK ,w ∼ N(0, I), (4)

to generate novel resource allocations x0 |H ∼ p𝜃∗(·;H) := Dx(H; 𝜃∗) ≈ D∗
x(H).

H

x0 xk xk′ xK· · ·
q(x1 | x0) q(xk | xk−1)

p𝜃 (x0 | x1;H)

· · ·
q(xk′ | xk′−1)

p𝜃 (xk | xk+1;H)

· · ·
q(xK | xK−1)

p𝜃 (xK−1 | xK ;H)p𝜃 (xk′ | xk′+1;H)

▶ We parametrize the denoiser 𝝐 𝜃 by a GNN architecture that cascades L graph
convolutional layers with read-in (xk, k) ↦→ Z0 and read-out ZL ↦→ 𝝐 𝜃∗ layers:

Z(ℓ) = 𝚿(ℓ)
(
Z(ℓ−1);H,Θ(ℓ)

)
= 𝜑

[ K∑︁
k=0

HkZ(ℓ−1)𝚯(ℓ)
k

]
, ℓ = 1, . . . , L. (5)

⇒ A graph signal generative model conditioned on input graphs H (via GSOs).

Numerical Results: Power Control

▶ A wireless (Rayleigh) fading channel with transmitter-receiver (tx-rx) pairs as users (nodes).
▶ Network state (GSO) H represented by the set of constant long-term channel gains.
▶ Actual channel gain from tx i to rx j at time 𝜏 fluctuates as hij,𝜏 ∼ DH̃|H(H) due to small-scale fading.
▶ Tx i allocates power xi,𝜏 ≥ 0 at time 𝜏 and causes interference to neighboring tx-rx pairs j ∈ N (i).

▶ Communication rate r determined by SINR at each rx j. ⇒ SINRj,𝜏 =
hjj,𝜏 . xj,𝜏

1 +∑
i∈N (j) hij,𝜏 . xi,𝜏

.

▶ Given H ∼ DH, we want to allocate transmit powers
x𝜏 ∼ Dx(H) over T time steps to maximize ergodic
network-wide sum-rate, subject to minimum-rate
requirements and a max. transmit power budget xmax:

P∗(H) = max
Dx(H)

1
T

T∑︁
𝜏=1

∑︁
j

r (SINRj,𝜏)

s. t.
1
T

T∑︁
𝜏=1

r (SINRj,𝜏) ≥ rmin, ∀j,

s. t. 0 ≤ xj,𝜏 ≤ xmax, ∀j, 𝜏 = 1, . . . , T .

▶ GDM policy x𝜏 ∼ Dx(H; 𝜃∗) achieve ergodic utility and requirement QoS close to the expert policy.
⇒ Deterministic baselines fail under challenging channel conditions.
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▶ GDM policy samples optimal power control policies that tend to be
probabilistic and involve multiple transmission modes.
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▶ GDM policy bypasses suboptimal transients and samples from stationary dual descent dynamics.
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